M1.(a)

breaking stress	\checkmark
stiffness constant, k	
tensile strain	
tensile stress	
Young modulus	\checkmark

(b) (i) elastic limit
only one attempt at the answer is allowed
(ii) $\left(E=300 \times 10^{6} / 4 \times 10^{-2}=7.5 \times 10^{9}\right)$
$7.5(\mathrm{~Pa}) \checkmark$ allow 7.4 to $7.6(\mathrm{~Pa})$
$\times 10^{9}$ J
first mark is for most significant digits ignoring the power of 10. E.g. 7500 gains mark
(c) straight line beginning on existing line at a strain of 0.10 and hitting the strain axis at a lower non-zero value
line that ends on the x-axis with strain between 0.045 and $0.055 \checkmark$ (only allow if first mark is given)
ie accuracy required \pm one division
(d) $8.99 \times 10^{-3}\left(\mathrm{~m}^{3}\right) \checkmark$ condone 1 sig fig allow 9.00×10^{-3}
(e) $0.9872 \times 8.99 \times 10^{-3}$ or $=8.8749 \times 10^{-3}\left(\mathrm{~m}^{3}\right) \checkmark$ allow $C E$ from 4 d

$$
(m=\rho V)=2700 \times 8.8749 \times 10^{-3}=24(\mathrm{~kg}) \checkmark(23.962 \mathrm{~kg})
$$

allow CE from first part, e.g. if 1.28% was used gives 0.311 kg

$$
\begin{aligned}
& V=0.9872 \times(d) \\
& m=2.665 \times(d) \\
& 1.28 \% \text { of } \mathrm{vol}=1.15 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

tensile stress

M2.(a) Use of Young Modulus = tensile strain \checkmark

The first mark is for calculating the tensile stress

To give tensile stress $=2 \times 10^{11} \times 3.0 \times 10^{-4}=6.0 \times 10^{7} \checkmark$
The second mark is substituting into the tensile force equation

tensile force

Use of tensile stress =
cross sectional area

To give tensile force $=6.0 \times 10^{7} \times 7.5 \times 10^{3}=4.5 \times 10^{5} \mathrm{~N}$ V
The third mark is for the correct answer
(b) Use of strain $=$ extension / original length

To give extension $=3.0 \times 10^{-4} \times 45=1.4 \times 10^{-2} \mathrm{~m}$
$\left(1.35 \times 10^{-2}\right) \checkmark$
The first mark is for calculating the extension

Use of energy stored $=1 / 2 \mathrm{Fe}$
To give

Energy stored $=1 / 2 \times 4.5 \times 10^{5} \times 1.4 \times 10^{-2}$

$$
=3.2 \times 10^{3} \mathrm{~J}
$$

$$
\left(3.04 \times 10^{3}\right)
$$

The second mark is for the final answer
(c) Temperature change $=$ pre-strain / pre-strain per K

$$
=3.0 \times 10^{-4} / 2.5 \times 10^{-5}=12 \mathrm{~K}
$$

The first mark is for the temperature change

Temperature $=8^{\circ} \mathrm{C}+12=20^{\circ} \mathrm{C}$
The second mark is for the final answer
(d) So that the rail is not always under stress \checkmark
as the rail spends little time at the highest temperature \checkmark
Or
To reduce the average stress the rail is under \checkmark
as zero stress will occur closer to average temperature / the rail will be under compressive / tensile stress at different times $\sqrt{ }$

M3.(a) $\quad 6.5 \times 10^{10} \mathrm{~Pa} \checkmark$
(b) $\quad \mathrm{kg} \mathrm{m}^{-1} \mathrm{~S}^{-2} \checkmark$
(c) Direction of movement of particles in transverse wave perpendicular to energy propagation direction \checkmark

Parallel for longitudinal \checkmark

$$
\left[\frac{E_{1}}{c_{1}}=\frac{E_{2}}{c_{2}}\right]
$$

$$
E=\rho c^{2} \text { or } \rho c=\frac{E}{c} \text { seen }
$$

(f) speed of the wave in seawater is less than speed of the wave in glass \checkmark
argument to show that water $n_{\text {glass }}$
so tir could be observed when wave moves from water to glass

M5.(a) P at the end of linear section \checkmark
(b) Measure original length and diameter \checkmark

Determine gradient of linear section to obtain F/extension \checkmark
$E=\frac{F}{e} \times \frac{\text { length }}{\pi\left(\frac{d}{2}\right)^{2}}$
Alternative:
Convert to stress-strain graph and determine gradient.
(c) Line from A

Parallel to straight section of original
Ending at horizontal axis \checkmark
(d) Plastic deformation has produced permanent extension / re-alignment of bonds in material hence intercept non-zero

Gradient is same because after extension identical forces between bonds
(e) 0.2% is a strain of 0.002

Stress $=2.0 \times 10^{11} \times 0.002=$
4×10^{8}

Force $\left(=\frac{\pi\left(6 \times 10^{-3}\right)^{2}}{4} \times 4 \times 10^{8}\right)$
$=11.3 \mathrm{kN}$
(f) Maximum force $=11300 \mathrm{~N}$

Weight of mass $=600 \times 9.81=5886 \mathrm{~N} \checkmark$

Accelerating force must be less than
$11300-5886=5423 \mathrm{~N} \checkmark$
$a(=F / m=5423 / 600)$
$=9.0 \mathrm{~m} \mathrm{~s}^{-2}$
(g) To lift double the load at the same acceleration, would require double the force,

The first mark is for discussing the effect on the force

To produce the same strain either use:

- double the diameter of wire - so the stress stays the same and therefore the strain is the same for the same wire,
- a wire with double the Young modulus - so that double the stress produces the same strain for the same diameter. \checkmark

The other two are for discussing the two alternative methods of keeping the strain the same

